Current applications of vertical farming, coupled with state-of-the-art technologies such as hyperspectral imaging, have resulted in 100× higher crop yields than traditional farming, while using 98% less soil and 95% less water.
Standard vision systems that use filters, RGB and thermal cameras, and light intensity sensors were the first imaging technology solutions to be adapted for comprehensive vegetation inspection and analysis. Multispectral and hyperspectral imaging, however, provide advantages over standard vision systems and are currently the two most-used technologies in precision and vertical farming.
Spectral data enables the analysis of the phenotypic characteristics of plants. Multispectral and hyperspectral imaging are used to monitor plant diseases, insect pests, and invasive plant species, and to estimate crop yield and classify crop distributions. The spectral data enables further analysis of the phenotypic characteristics of crops and allows extraction of information that would otherwise be lost.
Near-infrared (NIR) hyperspectral cameras, which cover the 900- to 1700-nm wavelength range, are typically used in precision agriculture for crop analysis. Healthy organic material reflects more IR light than unhealthy, dead, or inorganic material. NIR spectroscopy detects moisture, fat, starch, and protein in crops, allowing growers to take quick corrective action to enhance the quality and quantity of produce.
Source: photonics.com