Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

You are using software which is blocking our advertisements (adblocker).

As we provide the news for free, we are relying on revenues from our banners. So please disable your adblocker and reload the page to continue using this site.
Thanks!

Click here for a guide on disabling your adblocker.

Sign up for our daily Newsletter and stay up to date with all the latest news!

Subscribe I am already a subscriber

Study: Deep learning-enabled model for nutrient status detection of aquaponically grown plants

Developing models to assess the nutrient status of plants at various growth stages is challenging due to the dynamic nature of plant development. Hence, a recent study encoded spatiotemporal information of plants within a single time-series model to precisely assess the nutrient status of aquaponically cultivated lettuce. In particular, the long short-term memory (LSTM) and deep autoencoder (DAE) approaches were combined to classify aquaponically grown lettuce plants according to their nutrient status.

The proposed approach was validated using extensive sequential hyperspectral reflectance measurements acquired from lettuce leaves at different growth stages across the growing season. A DAE was used to extract distinct features from each sequential spectral dataset time step. These features were used as input to an LSTM model to classify lettuce grown across a gradient of nutrient levels. The results demonstrated that the LSTM outperformed the convolutional neural network (CNN) and multi-class support vector machine (MCSVM) approaches.

Also, features selected by the DAE showed better performance compared to features extracted using both genetic algorithms (GAs) and sequential forward selection (SFS). The hybridization of deep autoencoder and long short-term memory (DAE-LSTM) obtained the highest overall classification accuracy of 94%. The suggested methodology presents a pathway to automating the process of nutrient status diagnosis throughout the entire plant life cycle, with the LSTM technique poised to assume a pivotal role in forthcoming time-series analyses for precision agriculture.

Taha, M.F.; Mao, H.; Mousa, S.; Zhou, L.; Wang, Y.; Elmasry, G.; Al-Rejaie, S.; Elwakeel, A.E.; Wei, Y.; Qiu, Z. Deep Learning-Enabled Dynamic Model for Nutrient Status Detection of Aquaponically Grown Plants. Agronomy 2024, 14, 2290. https://doi.org/10.3390/agronomy14102290

Source: MDPI.

Publication date: